2025-01-28
arXiv

Challenges in Ensuring AI Safety in DeepSeek-R1 Models: The Shortcomings of Reinforcement Learning Strategies

Manojkumar Parmar , Yuvaraj Govindarajulu
The paper discusses the limitations of using Reinforcement Learning (RL) to ensure safety in advanced LLMs like DeepSeek-R1 and proposes a hybrid approach combining RL and Supervised Fine-Tuning (SFT) to mitigate harmful outputs.
Large Language Models (LLMs) have achieved remarkable progress in reasoning, alignment, and task-specific performance. However, ensuring harmlessness in these systems remains a critical challenge, particularly in advanced models like DeepSeek-R1. This paper examines the limitations of Reinforcement Learning (RL) as the primary approach for reducing harmful outputs in DeepSeek-R1 and compares it with Supervised Fine-Tuning (SFT). While RL improves reasoning capabilities, it faces challenges such as reward hacking, generalization failures, language mixing, and high computational costs. We propose hybrid training approaches combining RL and SFT to achieve robust harmlessness reduction. Usage recommendations and future directions for deploying DeepSeek-R1 responsibly are also presented.
2025-01-23
arXiv

A RAG-Based Institutional Assistant

Gustavo Kuratomi , Paulo Pirozelli , Fabio G. Cozman , Sarajane M. Peres
This paper introduces a RAG-based virtual assistant for the University of São Paulo, which integrates relevant document fragments to improve LLM performance. The system's accuracy significantly increases when provided with correct document chunks, highlighting the importance of database access and the limitations of current semantic search methods.
Although large language models (LLMs) demonstrate strong text generation capabilities, they struggle in scenarios requiring access to structured knowledge bases or specific documents, limiting their effectiveness in knowledge-intensive tasks. To address this limitation, retrieval-augmented generation (RAG) models have been developed, enabling generative models to incorporate relevant document fragments into their inputs. In this paper, we design and evaluate a RAG-based virtual assistant specifically tailored for the University of S\~ao Paulo. Our system architecture comprises two key modules: a retriever and a generative model. We experiment with different types of models for both components, adjusting hyperparameters such as chunk size and the number of retrieved documents. Our optimal retriever model achieves a Top-5 accuracy of 30%, while our most effective generative model scores 22.04\% against ground truth answers. Notably, when the correct document chunks are supplied to the LLMs, accuracy significantly improves to 54.02%, an increase of over 30 percentage points. Conversely, without contextual input, performance declines to 13.68%. These findings highlight the critical role of database access in enhancing LLM performance. They also reveal the limitations of current semantic search methods in accurately identifying relevant documents and underscore the ongoing challenges LLMs face in generating precise responses.
2025-01-23
arXiv

On the Reasoning Capacity of AI Models and How to Quantify It

Santosh Kumar Radha , Oktay Goktas
The paper proposes a new method to evaluate the reasoning capabilities of AI models, using positional bias and two phenomenological models to decompose model responses into reasoning, memorization, and guessing. It shows that current models often rely on memorization and pattern matching rather than true logical reasoning.
Recent advances in Large Language Models (LLMs) have intensified the debate surrounding the fundamental nature of their reasoning capabilities. While achieving high performance on benchmarks such as GPQA and MMLU, these models exhibit limitations in more complex reasoning tasks, highlighting the need for more rigorous evaluation methodologies. We propose a novel phenomenological approach that goes beyond traditional accuracy metrics to probe the underlying mechanisms of model behavior, establishing a framework that could broadly impact how we analyze and understand AI systems. Using positional bias in multiple-choice reasoning tasks as a case study, we demonstrate how systematic perturbations can reveal fundamental aspects of model decision-making. To analyze these behaviors, we develop two complementary phenomenological models: a Probabilistic Mixture Model (PMM) that decomposes model responses into reasoning, memorization, and guessing components and an Information-Theoretic Consistency (ITC) analysis that quantifies the relationship between model confidence and strategy selection. Through controlled experiments on reasoning benchmarks, we show that true reasoning remains challenging for current models, with apparent success often relying on sophisticated combinations of memorization and pattern matching rather than genuine logical deduction. More fundamentally, we demonstrate that accuracy alone often overstates a model's reasoning abilities, as model behavior can be characterized through underlying mechanisms in the phase space of cognitive strategies, revealing how models dynamically balance different approaches when responding to queries. This framework enables quantitative criteria for real-world deployments, allowing applications to specify reliability thresholds based on strategy distributions rather than aggregate performance metrics.
2025-01-23
arXiv

Improving Video Generation with Human Feedback

Jie Liu , Gongye Liu , Jiajun Liang , Ziyang Yuan , Xiaokun Liu
This paper introduces a pipeline that uses human feedback to improve video generation, including a new reward model and alignment algorithms. The proposed methods, particularly Flow-DPO and Flow-NRG, show significant improvements over existing techniques.
Video generation has achieved significant advances through rectified flow techniques, but issues like unsmooth motion and misalignment between videos and prompts persist. In this work, we develop a systematic pipeline that harnesses human feedback to mitigate these problems and refine the video generation model. Specifically, we begin by constructing a large-scale human preference dataset focused on modern video generation models, incorporating pairwise annotations across multi-dimensions. We then introduce VideoReward, a multi-dimensional video reward model, and examine how annotations and various design choices impact its rewarding efficacy. From a unified reinforcement learning perspective aimed at maximizing reward with KL regularization, we introduce three alignment algorithms for flow-based models by extending those from diffusion models. These include two training-time strategies: direct preference optimization for flow (Flow-DPO) and reward weighted regression for flow (Flow-RWR), and an inference-time technique, Flow-NRG, which applies reward guidance directly to noisy videos. Experimental results indicate that VideoReward significantly outperforms existing reward models, and Flow-DPO demonstrates superior performance compared to both Flow-RWR and standard supervised fine-tuning methods. Additionally, Flow-NRG lets users assign custom weights to multiple objectives during inference, meeting personalized video quality needs. Project page: https://gongyeliu.github.io/videoalign.
2025-01-23
arXiv

One-Prompt-One-Story: Free-Lunch Consistent Text-to-Image Generation Using a Single Prompt

Tao Liu , Kai Wang , Senmao Li , Joost van de Weijer , Fahad Shahbaz Khan
This paper introduces a training-free method, One-Prompt-One-Story, for consistent text-to-image generation that maintains character identity using a single prompt. The method concatenates all prompts into one input and refines the process with Singular-Value Reweighting and Identity-Preserving Cross-Attention. Experiments show its effectiveness compared to existing approaches.
Text-to-image generation models can create high-quality images from input prompts. However, they struggle to support the consistent generation of identity-preserving requirements for storytelling. Existing approaches to this problem typically require extensive training in large datasets or additional modifications to the original model architectures. This limits their applicability across different domains and diverse diffusion model configurations. In this paper, we first observe the inherent capability of language models, coined context consistency, to comprehend identity through context with a single prompt. Drawing inspiration from the inherent context consistency, we propose a novel training-free method for consistent text-to-image (T2I) generation, termed "One-Prompt-One-Story" (1Prompt1Story). Our approach 1Prompt1Story concatenates all prompts into a single input for T2I diffusion models, initially preserving character identities. We then refine the generation process using two novel techniques: Singular-Value Reweighting and Identity-Preserving Cross-Attention, ensuring better alignment with the input description for each frame. In our experiments, we compare our method against various existing consistent T2I generation approaches to demonstrate its effectiveness through quantitative metrics and qualitative assessments. Code is available at https://github.com/byliutao/1Prompt1Story.
2025-01-22
arXiv

Kimi k1.5: Scaling Reinforcement Learning with LLMs

Haoyu Lu , Hao Yang , Kimi Team , Angang Du , Bofei Gao
The paper introduces Kimi k1.5, a multi-modal LLM trained with reinforcement learning (RL), which achieves state-of-the-art reasoning performance across multiple benchmarks without relying on complex techniques. It also presents effective long2short methods that improve short-CoT models, significantly outperforming existing models.
Language model pretraining with next token prediction has proved effective for scaling compute but is limited to the amount of available training data. Scaling reinforcement learning (RL) unlocks a new axis for the continued improvement of artificial intelligence, with the promise that large language models (LLMs) can scale their training data by learning to explore with rewards. However, prior published work has not produced competitive results. In light of this, we report on the training practice of Kimi k1.5, our latest multi-modal LLM trained with RL, including its RL training techniques, multi-modal data recipes, and infrastructure optimization. Long context scaling and improved policy optimization methods are key ingredients of our approach, which establishes a simplistic, effective RL framework without relying on more complex techniques such as Monte Carlo tree search, value functions, and process reward models. Notably, our system achieves state-of-the-art reasoning performance across multiple benchmarks and modalities -- e.g., 77.5 on AIME, 96.2 on MATH 500, 94-th percentile on Codeforces, 74.9 on MathVista -- matching OpenAI's o1. Moreover, we present effective long2short methods that use long-CoT techniques to improve short-CoT models, yielding state-of-the-art short-CoT reasoning results -- e.g., 60.8 on AIME, 94.6 on MATH500, 47.3 on LiveCodeBench -- outperforming existing short-CoT models such as GPT-4o and Claude Sonnet 3.5 by a large margin (up to +550%).
2025-01-22
arXiv

DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning

Zhiyu Wu , Xiaokang Chen , Zizheng Pan , Xingchao Liu , Wen Liu
The paper introduces DeepSeek-R1-Zero, a model trained with reinforcement learning that exhibits strong reasoning capabilities but faces readability and language mixing issues. To improve these aspects, DeepSeek-R1 is developed, which uses multi-stage training and cold-start data, achieving performance on par with OpenAI-o1-1217. The models and additional resources are open-sourced.
We introduce our first-generation reasoning models, DeepSeek-R1-Zero and DeepSeek-R1. DeepSeek-R1-Zero, a model trained via large-scale reinforcement learning (RL) without supervised fine-tuning (SFT) as a preliminary step, demonstrates remarkable reasoning capabilities. Through RL, DeepSeek-R1-Zero naturally emerges with numerous powerful and intriguing reasoning behaviors. However, it encounters challenges such as poor readability, and language mixing. To address these issues and further enhance reasoning performance, we introduce DeepSeek-R1, which incorporates multi-stage training and cold-start data before RL. DeepSeek-R1 achieves performance comparable to OpenAI-o1-1217 on reasoning tasks. To support the research community, we open-source DeepSeek-R1-Zero, DeepSeek-R1, and six dense models (1.5B, 7B, 8B, 14B, 32B, 70B) distilled from DeepSeek-R1 based on Qwen and Llama.
2025-01-22
arXiv

SRMT: Shared Memory for Multi-agent Lifelong Pathfinding

Alsu Sagirova , Yuri Kuratov , Mikhail Burtsev
The paper introduces SRMT, a method that enhances coordination in multi-agent systems by sharing and broadcasting working memories. SRMT outperforms various baselines in partially observable pathfinding tasks, particularly under sparse rewards. The results show that shared recurrent memory can improve cooperation in decentralized multi-agent settings.
Multi-agent reinforcement learning (MARL) demonstrates significant progress in solving cooperative and competitive multi-agent problems in various environments. One of the principal challenges in MARL is the need for explicit prediction of the agents' behavior to achieve cooperation. To resolve this issue, we propose the Shared Recurrent Memory Transformer (SRMT) which extends memory transformers to multi-agent settings by pooling and globally broadcasting individual working memories, enabling agents to exchange information implicitly and coordinate their actions. We evaluate SRMT on the Partially Observable Multi-Agent Pathfinding problem in a toy Bottleneck navigation task that requires agents to pass through a narrow corridor and on a POGEMA benchmark set of tasks. In the Bottleneck task, SRMT consistently outperforms a variety of reinforcement learning baselines, especially under sparse rewards, and generalizes effectively to longer corridors than those seen during training. On POGEMA maps, including Mazes, Random, and MovingAI, SRMT is competitive with recent MARL, hybrid, and planning-based algorithms. These results suggest that incorporating shared recurrent memory into the transformer-based architectures can enhance coordination in decentralized multi-agent systems. The source code for training and evaluation is available on GitHub: https://github.com/Aloriosa/srmt.
2025-01-22
arXiv

VideoLLaMA 3: Frontier Multimodal Foundation Models for Image and Video Understanding

Boqiang Zhang , Kehan Li , Zesen Cheng , Zhiqiang Hu , Yuqian Yuan
VideoLLaMA3, a vision-centric multimodal foundation model, enhances image and video understanding through a four-stage training process that leverages high-quality image-text data. The model's design allows for the encoding of variable-resolution images and compact representation of videos, leading to superior performance in benchmarks.
In this paper, we propose VideoLLaMA3, a more advanced multimodal foundation model for image and video understanding. The core design philosophy of VideoLLaMA3 is vision-centric. The meaning of "vision-centric" is two-fold: the vision-centric training paradigm and vision-centric framework design. The key insight of our vision-centric training paradigm is that high-quality image-text data is crucial for both image and video understanding. Instead of preparing massive video-text datasets, we focus on constructing large-scale and high-quality image-text datasets. VideoLLaMA3 has four training stages: 1) Vision Encoder Adaptation, which enables vision encoder to accept images of variable resolutions as input; 2) Vision-Language Alignment, which jointly tunes the vision encoder, projector, and LLM with large-scale image-text data covering multiple types (including scene images, documents, charts) as well as text-only data. 3) Multi-task Fine-tuning, which incorporates image-text SFT data for downstream tasks and video-text data to establish a foundation for video understanding. 4) Video-centric Fine-tuning, which further improves the model's capability in video understanding. As for the framework design, to better capture fine-grained details in images, the pretrained vision encoder is adapted to encode images of varying sizes into vision tokens with corresponding numbers, rather than a fixed number of tokens. For video inputs, we reduce the number of vision tokens according to their similarity so that the representation of videos will be more precise and compact. Benefit from vision-centric designs, VideoLLaMA3 achieves compelling performances in both image and video understanding benchmarks.
2025-01-22
arXiv

Robust Representation Consistency Model via Contrastive Denoising

Jiachen Lei , Julius Berner , Jiongxiao Wang , Zhongzhu Chen , Zhongjia Ba
The paper introduces a new method for robust representation consistency via contrastive denoising, which improves the robustness of deep neural networks against adversarial perturbations and reduces computational overhead during inference. The method reformulates the generative modeling task as a discriminative task in the latent space, enabling implicit denoising-then-classification with a single prediction, and achieves state-of-the-art performance on various datasets.
Robustness is essential for deep neural networks, especially in security-sensitive applications. To this end, randomized smoothing provides theoretical guarantees for certifying robustness against adversarial perturbations. Recently, diffusion models have been successfully employed for randomized smoothing to purify noise-perturbed samples before making predictions with a standard classifier. While these methods excel at small perturbation radii, they struggle with larger perturbations and incur a significant computational overhead during inference compared to classical methods. To address this, we reformulate the generative modeling task along the diffusion trajectories in pixel space as a discriminative task in the latent space. Specifically, we use instance discrimination to achieve consistent representations along the trajectories by aligning temporally adjacent points. After fine-tuning based on the learned representations, our model enables implicit denoising-then-classification via a single prediction, substantially reducing inference costs. We conduct extensive experiments on various datasets and achieve state-of-the-art performance with minimal computation budget during inference. For example, our method outperforms the certified accuracy of diffusion-based methods on ImageNet across all perturbation radii by 5.3% on average, with up to 11.6% at larger radii, while reducing inference costs by 85$\times$ on average. Codes are available at: https://github.com/jiachenlei/rRCM.