Latest Research Papers
2025-01-23
arXiv
Improving Video Generation with Human Feedback
This paper introduces a pipeline that uses human feedback to improve video generation, including a new reward model and alignment algorithms. The proposed methods, particularly Flow-DPO and Flow-NRG, show significant improvements over existing techniques.
Video generation has achieved significant advances through rectified flow
techniques, but issues like unsmooth motion and misalignment between videos and
prompts persist. In this work, we develop a systematic pipeline that harnesses
human feedback to mitigate these problems and refine the video generation
model. Specifically, we begin by constructing a large-scale human preference
dataset focused on modern video generation models, incorporating pairwise
annotations across multi-dimensions. We then introduce VideoReward, a
multi-dimensional video reward model, and examine how annotations and various
design choices impact its rewarding efficacy. From a unified reinforcement
learning perspective aimed at maximizing reward with KL regularization, we
introduce three alignment algorithms for flow-based models by extending those
from diffusion models. These include two training-time strategies: direct
preference optimization for flow (Flow-DPO) and reward weighted regression for
flow (Flow-RWR), and an inference-time technique, Flow-NRG, which applies
reward guidance directly to noisy videos. Experimental results indicate that
VideoReward significantly outperforms existing reward models, and Flow-DPO
demonstrates superior performance compared to both Flow-RWR and standard
supervised fine-tuning methods. Additionally, Flow-NRG lets users assign custom
weights to multiple objectives during inference, meeting personalized video
quality needs. Project page: https://gongyeliu.github.io/videoalign.