2025-01-22
arXiv

Evolution and The Knightian Blindspot of Machine Learning

Joel Lehman , Elliot Meyerson , Tarek El-Gaaly , Kenneth O. Stanley , Tarin Ziyaee
The paper highlights a critical blind spot in machine learning, specifically its inability to handle Knightian uncertainty, and contrasts this with the robustness of biological evolution. It argues for the importance of addressing this gap to create more robust AI, especially in open-world scenarios.
This paper claims that machine learning (ML) largely overlooks an important facet of general intelligence: robustness to a qualitatively unknown future in an open world. Such robustness relates to Knightian uncertainty (KU) in economics, i.e. uncertainty that cannot be quantified, which is excluded from consideration in ML's key formalisms. This paper aims to identify this blind spot, argue its importance, and catalyze research into addressing it, which we believe is necessary to create truly robust open-world AI. To help illuminate the blind spot, we contrast one area of ML, reinforcement learning (RL), with the process of biological evolution. Despite staggering ongoing progress, RL still struggles in open-world situations, often failing under unforeseen situations. For example, the idea of zero-shot transferring a self-driving car policy trained only in the US to the UK currently seems exceedingly ambitious. In dramatic contrast, biological evolution routinely produces agents that thrive within an open world, sometimes even to situations that are remarkably out-of-distribution (e.g. invasive species; or humans, who do undertake such zero-shot international driving). Interestingly, evolution achieves such robustness without explicit theory, formalisms, or mathematical gradients. We explore the assumptions underlying RL's typical formalisms, showing how they limit RL's engagement with the unknown unknowns characteristic of an ever-changing complex world. Further, we identify mechanisms through which evolutionary processes foster robustness to novel and unpredictable challenges, and discuss potential pathways to algorithmically embody them. The conclusion is that the intriguing remaining fragility of ML may result from blind spots in its formalisms, and that significant gains may result from direct confrontation with the challenge of KU.
2024-04-25
arXiv

A Survey of Generative Search and Recommendation in the Era of Large Language Models

Yongqi Li , Xinyu Lin , Wenjie Wang , Fuli Feng , Liang Pang
The paper surveys the emerging paradigm of generative search and recommendation driven by large language models, providing a unified framework to categorize and analyze existing works. It highlights unique challenges, open problems, and future directions in this field.
With the information explosion on the Web, search and recommendation are foundational infrastructures to satisfying users' information needs. As the two sides of the same coin, both revolve around the same core research problem, matching queries with documents or users with items. In the recent few decades, search and recommendation have experienced synchronous technological paradigm shifts, including machine learning-based and deep learning-based paradigms. Recently, the superintelligent generative large language models have sparked a new paradigm in search and recommendation, i.e., generative search (retrieval) and recommendation, which aims to address the matching problem in a generative manner. In this paper, we provide a comprehensive survey of the emerging paradigm in information systems and summarize the developments in generative search and recommendation from a unified perspective. Rather than simply categorizing existing works, we abstract a unified framework for the generative paradigm and break down the existing works into different stages within this framework to highlight the strengths and weaknesses. And then, we distinguish generative search and recommendation with their unique challenges, identify open problems and future directions, and envision the next information-seeking paradigm.